1 led显示屏的工作原理
led显示屏的基本工作原理是动态扫描。动态扫描又分为行扫描和列扫描两种方式,常用的方式是行扫描。行扫描方式又分为8行扫描和16行扫描两种。
在行扫描工作方式下,每一片led点阵片都有一组列驱动电路,列驱动电路中一定有一片锁存器或移位寄存器,用来锁存待显示内容的字模数据。在行扫描工作方式下,同一排led点阵片的同名行控制引脚是并接在一条线上的,共8条线,最后连接在一个行驱动电路上;行驱动电路中也一定有一片锁存器或移位寄存器,用来锁存行扫描信号。
led显示屏的列驱动电路和行驱动电路一般都采用单片机进行控制,常用的单片机是MCS51系列。led显示屏显示的内容一般按字模的形式存放在单片机的外部数据存储器中,字模是8位二进制数。
单片机对led显示屏的控制过程是先读后写。按led点阵片在屏幕上的排列顺序,单片机先对第1排的第1片led点阵片的列驱动锁存器,写入从外部数据存储器读得的字模数据,接着对第2片、第3片……直到这一排的最后一片都写完字模数据后,单片机再对这一排的行驱动锁存器写行扫描信号,于是第1排第1行与字模数据相关的发光二极管点亮。接着第2排第1行、第3排第1行……直到最后一排第1行的点亮。各排第1行都点亮后,延时一段时间,然后黑屏,这样就算完成了单片机对led显示屏的一行扫描控制。
单片机对led显示屏第2行的扫描控制、第3行的扫描控制……直到第8行的扫描控制,其过程与第1行的扫描控制过程相同。对全部8行的控制过程都完成后,led显示屏也就完成了1帧图像的完整显示。
虽然按这种工作方式,led显示屏是一行一行点亮的,每次都只有一行亮,但只要保证每行每秒钟能点亮50次以上,即刷新频率高于50 Hz,那么由于人的视觉惰性,所看到的led显示屏显示的图像还是全屏稳定的图像。
2 led显示屏的传统控制方法
参考文献[1]对led显示屏的控制电路作了归纳和比较。其中,显示控制电路是按行扫描方式工作的,列控制电路分为两大类。列控制电路中,一类是用74LS377之类的芯片作为列驱动电路的锁存器,CPU通过并行总线给列驱动电路的锁存器写字模数据;另一类是用移位寄存器74LS595之类的芯片作为列驱动电路的锁存器,CPU通过串行总线给列驱动电路的锁存器写字模数据。
无论是并行总线的控制方式还是串行总线的控制方式,其工作过程都是先给数据指针DPTR赋值,接着累加器A按数据指针DPTR的指向,从外部数据存储器RAM中读得字模数据。然后,并行总线时,再给数据指针DPTR赋值,接着CPU将累加器A中的字模数据,按数据指针DPTR的指向,写给led点阵片列驱动电路的锁存器;串行总线时,CPU将累加器A中的字模数据,通过串行口写给led点阵片列驱动电路的锁存器。
一般显示控制中,使用较多的单片机是MCS51系列。假设单片机系统的晶振频率是12 MHz,机器周期是1 μs,上述两种控制方式完成1片led点阵片的显示控制都得十几μs。
本文提出的高速控制方案,完成1片led点阵片的显示控制大约只要4 μs。按此推算,1片MCS51系列的单片机,差不多可以对600多片led点阵片进行显示控制。与传统的控制方法相比,显示控制的效率成倍提高。
3 led显示屏的高速控制方案
图1是高速控制方案led显示屏电路原理。采用MCS51系列单片机对led显示屏进行控制;随机存储器62512用作led显示屏的数据存储器,存储待显示内容的字模数据;采用8行扫描方式,多片led点阵片共用1组行驱动电路;每片led点阵片都有一组列驱动电路,用74LS377作为列驱动的锁存器,CPU通过并行总线给列驱动电路的锁存器写字模数据;地址译码电路,用于产生led点阵片行驱动电路和列驱动电路的片选地址。
本方案的特点有两个: 第一,虽然CPU还是通过并行总线给列驱动电路的锁存器写字模数据,但是锁存器的锁存信号改用了CPU的控制信号RD,而不是常规用法的WR;第二,地址译码电路保证了led点阵片列驱动电路的片选地址和数据存储器的某一段的逻辑地址是重叠的,而不是常规用法,这两组地址必须分开。
由于上述电路的一些简单更改,单片机对led显示屏的显示控制效率将发生明显的变化。具体工作过程如下: 假定数据指针DPTR中已经装入了数据存储器的地址,执行指令“MOVXA,@DPTR”。这条指令的功能是CPU按DPTR的指向从外部数据存储器中读字模数据,读到累加器A中;但是在本电路中,由于led点阵片列驱动电路的片选地址和数据存储器的某一段的逻辑地址是重叠的,也就是说,在执行指令“MOVXA,@DPTR”时,DPTR除了指向外部数据存储器的某个地址外,还选中了某一个led点阵片列驱动电路的锁存器。如果此时被选中的这个锁存器的锁存引脚正好有打入脉冲来到,那么锁存器也就将从外部数据存储器送出的字模数据锁住了。这个打入脉冲用的就是RD。RD是CPU在执行指令“MOVXA,@DPTR”时向外部数据存储器发出的读控制信号。由于MCS51系列单片机的读控制信号RD和写控制信号WR的时序完全相同[2],RD代替WR实现锁存功能,当然也就没有什么悬念了。这条指令在执行时,在完成对数据存储器读的同时,又完成了对led点阵片的写,因此加快了显示控制的过程。
前面讲过,并行总线时CPU完成1次向led点阵片的列驱动电路的锁存器写字模数据的程序过程,大约需要十几μs;而现在只要4 μs,快多了,因为现在完成1次向led点阵片的列驱动电路的锁存器写字模数据的程序过程只要两步,首先给数据指针DPTR赋有效地址,接着CPU按DPTR的指向从外部数据存储器中读字模数据,与此同时也将字模数据传给了led点阵片列驱动电路的锁存器。2条指令,4个机器周期,4 μs。这里要补充说明一点,在编制全部led点阵片列驱动电路的锁存器写字模数据的程序时,不要用循环指令,因为那样每次过程又得增加2 μs;要采用对led点阵片逐片编程的方法,这样编出来的程序虽然占空间,但节省了时间。用空间换时间的设计方法,有时也是设计人员值得尝试的一种方法。
本电路的行驱动锁存器的锁存控制,还是用CPU的写控制信号WR,不作更改。行驱动锁存器的片选信号也来自地址译码电路。为了避免数据存储器和led点阵片之间的相互干扰,与这组地址对应的数据存储器的这部分存储空间就不用它了。